Frobenius manifold via Weyl group invariant theory

Takumi Otani

Osaka university

August 18, 2021

joint work with Akishi Ikeda, Yuuki Shiraishi and Atsushi Takahashi.

Introduction

3 construction of Frobenius manifold Bridgeland stability condition

¹ Introduction

- 3 construction of Frobenius manifold
- **•** Bridgeland stability condition

² Frobenius manifold

- **•** Definition of Frobenius manifolds
- Intersection form

³ *ℓ*-Kronecker quiver

- Quiver and root system
- ADE type
- *ℓ*-Kronecker quiver

⁴ "*n*-extended" affine *Aⁿ*

- Frobenius manifold via (Def.)
- Perspectives

Introduction

3 construction of Frobenius manifold Bridgeland stability condition

Roughly speaking,

Frobenius manifold $=$ complex manifold $+$ Frobenius structure $($ $=$ flat structure)

There exist 3 different constructions of Frobenius manifolds:

(GW) genus 0 Gromov–Witten theory,

(Def.) deformation theory $+$ primitive form,

(Weyl) root system $+$ Weyl group invariant theory.

Classical Mirror Symmetry

A Frobenius manifold constructed by (GW) (resp. (Def.)) is isomorphic to one constructed by (Def.) (resp. (GW)).

Introduction

3 construction of Frobenius manifold Bridgeland stability condition

On the other hand, the construction (Weyl) is related with (Def.) by the period mapping of a (certain) primitive form.

Example: ADE	(Def.)	(Weyl)
ADE singularity	\longleftrightarrow	ADE root system
$f: \mathbb{C}^3 \longrightarrow \mathbb{C}$	$(L, I, \Delta^{\text{re}})$	

The isomorphism of Frobenius manifolds between (Def.) and (Weyl) is induced by the period mapping of the primitive form $\zeta = dz_1 \wedge dz_2 \wedge dz_3$.

In order to see global description of the period mapping of a primitive form, Frobenius manifolds via (Weyl) play an important role.

3 construction of Frobenius manifold Bridgeland stability condition

The construction (Weyl) is known a few cases;

- **·** finite Weyl group [Saito, Saito–Yano–Sekiguchi, Dubrovin],
- extended affine Weyl group [Dubrovin–Zhang, Dubrovin–Zhang–Zuo, Zuo],
- **·** elliptic Weyl group [Saito, Satake, Dubrovin, Bertola],

Problem

Establish a construction of Frobenius structures by the invariant theory of the Weyl group for a given (generalized) root system.

. . .

**Introduction
Frobenius manifold**
۴-Kronecker quiver \lq " n -extended" affine A_n

Let D be a $\mathbb C$ -linear triangulated category and $K_0(\mathcal D)$ the Grothendieck group of *D*.

3 construction of Frobenius manifold Bridgeland stability condition

A stability condition (*Z,P*) on *D* consists of

- *Z* : *K*0(*D*) *−→* C; group homomorphism (called a central charge),
- *P*(*ϕ*): additive full sub categories (*ϕ ∈* R),

satisfying some axioms.

Denote by Stab(*D*) the space of all stability conditions on *D*. It is known that Stab(*D*) has natural topology.

Theorem 1 (Bridgeland).

The natural forgetful map

 $\mathcal{Z}:$ Stab $(\mathcal{D}) \longrightarrow$ Hom_{$\mathbb{Z}(K_0(\mathcal{D}), \mathbb{C}),$ $(Z, \mathcal{P}) \mapsto Z$,}

is a local homeomorphism. In particular, Stab(*D*) *has a structure of complex manifolds.*

Introduction

In the viewpoint of mirror symmetry, Takahashi conjectured the following:

3 construction of Frobenius manifold Bridgeland stability condition

Conjecture 2 (Takahashi).

Let

- $\vec{\Delta}$ be a Dynkin quiver, $\mathcal{D}^b(\vec{\Delta}):=\mathcal{D}^b\mathrm{mod}\,\mathbb{C}\vec{\Delta}$,
- *f* : C ³ *−→* C *the ADE singularity corresponding to* ∆*⃗ , and*
- $F:\mathbb{C}^3\times M\longrightarrow \mathbb{C}$ the universal unfolding of f $(M=\mathbb{C}^n).$

There should exist a biholomorphic map

 $\mathrm{Stab}(\mathcal{D}^b(\vec{\Delta})) \cong M.$

In particular, $\mathrm{Stab}(\mathcal{D}^b(\vec{\Delta}))$ *has a Frobenius structure (and real structure) induced by the Frobenius manifold M (with real structure) constructed by the deformation theory and primitive forms.*

**Introduction
Frobenius manifold**
۴-Kronecker quiver \lq " n -extended" affine A_n 3 construction of Frobenius manifold Bridgeland stability condition

[Bridgeland–Qiu–Surtherland] : *A*² case. [Haiden–Katzarkov–Kontsevich] : *Aⁿ* and affine-*Ap,q* cases.

Moreover, they showed that the natural map

$$
\mathcal{Z}: \mathrm{Stab}(\mathcal{D}) \longrightarrow \mathrm{Hom}_{\mathbb{Z}}(K_0(\mathcal{D}), \mathbb{C})
$$

is corresponding to the exponential period mapping of a (certain) primitive form under the biholomorphic map. Namely, the following diagram cummutes:

where \widetilde{M} is the universal covering space of M and ζ is a certain primitive form.

Introduction 3 construction of Frobenius manifold Bridgeland stability condition

Based on the viewpoint of stability conditions, we construct Frobenius manifolds for

● *ℓ*-Kronecker quiver

$$
K_{\ell}:\ \bullet_1 \qquad \qquad \underbrace{\qquad \qquad }_{a_1} \qquad \qquad } \bullet_2 \ ,
$$

The root system (Kac–Moody Lie algebra) associated with *K^ℓ* is of indefinite type.

² "*n*-extended" affine *Aⁿ* case. The Coxeter–Dynkin diagram is given by

Introduction
Frobenius manifold
L-Kronecker quiverے \lq " n -extended" affine A_n

Definition of Frobenius manifolds Intersection form

1 Introduction

- 3 construction of Frobenius manifold
- Bridgeland stability condition

² Frobenius manifold

- Definition of Frobenius manifolds
- Intersection form

³ *ℓ*-Kronecker quiver

- Quiver and root system
- ADE type
- *ℓ*-Kronecker quiver

⁴ "*n*-extended" affine *Aⁿ*

- Frobenius manifold via (Def.)
- Perspectives

Introduction
Frobenius manifold *ℓ*-Kronecker quiver \lq " n -extended" affine A_n

Definition of Frobenius manifolds

Recall the definition of Frobenius manifold.

Let *M* be an *n*-dimensional complex manifold.

Definition 3.

Let d ∈ C *and*

- *η* : *T^M × T^M −→ OM: non-degenerate symmetric OM-bilinear form,*
- *◦* : *T^M × T^M −→ TM: associative commutative OM-bilinear product,*
- $e \in \Gamma(M, \mathcal{T}_M)$: the unit of \circ ,
- *E ∈* Γ(*M, TM*)*, which is called the Euler vector field.*

The tuple (η, \circ, e, E) *is a Frobenius structure of (conformal) dimension d on M if it satisfies the following axioms:*

Introduction
Frobenius manifold *ℓ*-Kronecker quiver \lq " n -extended" affine A_n

Definition of Frobenius manifolds

Axioms of Frobenius structure

For any $\delta, \delta', \delta'' \in \mathcal{T}_M$,

- \bullet The Levi-Civita connection $\nabla\!\!\!/\, : \mathcal{T}_M \longrightarrow \mathcal{T}_M \otimes \Omega^1_M$ with respect to η is flat,
- ² The product *◦* is self-adjoint with respect to *η*: that is,

$$
\eta(\delta \circ \delta', \delta'') = \eta(\delta, \delta' \circ \delta''),
$$

- \bullet The tensor $C: \mathcal{T}_M \longrightarrow \mathrm{End}_{\mathcal{O}_M} \mathcal{T}_M$ defined by $C_\delta \delta' := \delta \circ \delta'$ is *∇***/**-flat,
- ⁴ The unit element *e* is *∇***/**-flat,
- ⁵ The product *◦* and the metric *η* are homogeneous of degree 1 and 2 *− d*, respectively, with respect to the Lie derivative Lie*^E* of the Euler vector field *E*: that is,

 $\text{Lie}_E(\circ) = \circ$, $\text{Lie}_E(\eta) = (2 - d)\eta$.

A manifold *M* with a Frobenius structure (*η, ◦, e, E*) is called a Frobenius manifold.

Introduction
Frobenius manifold *ℓ*-Kronecker quiver \lq " n -extended" affine A_n

Definition of Frobenius manifolds

Let (M, η, \circ, e, E) be a Frobenius manifold of dimension *d*.

Proposition 4.

There exists a local coordinate system (t_1, \dots, t_n) and a holomorphic *function F ∈ O^M such that*

- $e = \partial_1$, Ker ∇ $\cong \bigoplus_{i=1}^n \mathbb{C}_M \cdot \partial_i$
- *η naturally gives a* C*M-bilinear η* : Ker*∇***/** *×* Ker*∇***/** *−→* C*M,*
- $E = \sum_{i=1}^{n} [(1 q_i)t_i + c_i] \partial_i$, if $q_i \neq 1$ then $c_i = 0$,
- $\eta(\partial_i \circ \partial_j, \partial_k) = \partial_i \partial_j \partial_k \mathcal{F}$,

.

• $E\mathcal{F} = (3 - d)\mathcal{F} + (quadratic terms in t_2, \cdots, t_n)$, *∂*

where
$$
\partial_i = \frac{\partial}{\partial t_i}
$$

The coordinate system (t_1, \dots, t_n) is called a flat coordinate system, and the function F is called the Frobenius potential.

Frobenius str. $\stackrel{\text{local}}{=}$ flat coordinate + Frobenius potential (η, \circ, e, E) (t_1, \ldots, t_n) *F*

Introduction
Frobenius manifold
L-Kronecker quiverے \lq " n -extended" affine A_n Definition of Frobenius manifolds Intersection form

Define a subset *D ⊂ M*, called the discriminant, by

$$
D := \{ p \in M \mid \det(C_E)(p) = 0 \}.
$$

Set $M^{\text{reg}} := M \setminus D$.

Definition 5.

Define a symmetric $\mathcal{O}_{M^{reg}}$ *-bilinear form* $g: \mathcal{T}_{M^{reg}} \times \mathcal{T}_{M^{reg}} \longrightarrow \mathcal{O}_{M^{reg}}$ by

$$
g(\delta, \delta') := \eta(C_E^{-1}\delta, \delta').
$$

*It induces a symmetric OM*reg *-bilinear form on* Ω 1 *^M*reg *. We call this* s ymmetric $\mathcal{O}_{M^\mathrm{reg}}$ -bilinear form $g:\Omega^1_{M^\mathrm{reg}}\times\Omega^1_{M^\mathrm{reg}}\longrightarrow\mathcal{O}_{M^\mathrm{reg}}$ the *intersection form of the Frobenius manifold.*

On the flat coordinate system (t_1, \cdots, t_n) , the intersection form g is given by

$$
g(dt_i, dt_j) = \sum_{a,b=1}^n \eta^{ia} \eta^{jb} E \partial_a \partial_b \mathcal{F}, \quad \eta^{ia} := \eta(dt_i, dt_a).
$$

Introduction
Frobenius manifold
L-Kronecker quiverے \lq " n -extended" affine A_n

Definition of Frobenius manifolds Intersection form

Denote by *∇* the Levi–Civita connection with respect to *g*. The connection *∇* is called the second structure connection of the Frobenius manifold (M, η, \circ, e, E) . It is known that the connection ∇ is flat.

Definition 6.

Define a local system Sol(*∇*) *on M*reg *by*

 $Sol(\nabla) := \{x \in \mathcal{O}_{M^{\text{reg}}} \mid \nabla dx = 0\}.$

Fix a point *p*⁰ *∈ M*reg. Then one can obtain a group homomorphism

 $\pi_1(M^{\text{reg}}, p_0) \longrightarrow \text{Aut}(\text{Sol}(\nabla)_{p_0}).$

The image of the map is called the monodromy group of the Frobenius manifold. Denote by $\widetilde{M^\mathrm{reg}}$ the monodromy covering space of $M^\mathrm{reg}.$

Introduction
Frobenius manifold
L-Kronecker quiverے \lq " n -extended" affine A_n

Definition of Frobenius manifolds Intersection form

By the analytic continuation, we have a holomorphic map

$$
M^{\text{reg}} \times \text{Sol}(\nabla)_{p_0} \longrightarrow \mathbb{C}, \quad (\widetilde{p}, x) \mapsto x(\widetilde{p}).
$$

 $Put E := Hom_{\mathbb{C}}(\mathrm{Sol}(\nabla)_{p_0}, \mathbb{C}).$

Definition 7.

The period mapping associated to the Frobenius manifold is the holomorphic map

 $\widetilde{M}^{\text{reg}} \longrightarrow \mathbb{E}, \quad \widetilde{p} \mapsto (x \mapsto x(\widetilde{p})).$

Roughly speaking, the period mapping associated to a Frobenius manifold is "the change of coordinate" from a flat coordinate system (t_1, \ldots, t_n) to a ∇ -flat coordinate system (x_1, \ldots, x_n) .

Introduction Frobenius manifold *ℓ*-Kronecker quiver "*n*-extended" affine *An*

Quiver and root system ADE type *ℓ*-Kronecker quiver

1 Introduction

- 3 construction of Frobenius manifold
- Bridgeland stability condition

² Frobenius manifold

- **•** Definition of Frobenius manifolds
- Intersection form

³ *ℓ*-Kronecker quiver

- Quiver and root system
- ADE type
- *ℓ*-Kronecker quiver

- ⁴ "*n*-extended" affine *Aⁿ*
	- Frobenius manifold via (Def.)
	- Perspectives

Introduction Frobenius manifold *ℓ*-Kronecker quiver "*n*-extended" affine *An* Quiver and root system ADE type

Let $Q = \{Q_0, Q_1\}$ be a connected finite acyclic quiver, and set $Q_0 = \{1, \ldots, n\}.$

A matrix $A_Q = (a_{ij})$ of size *n* defined by

$$
a_{ij} := 2\delta_{ij} - (q_{ij} + q_{ji}), \quad q_{ij} := #\{i \to j \in Q_1\}, \quad \text{for } i, j \in Q_0,
$$

is called the generalized Cartan matrix of *Q*.

$\mathsf{Example:} \ \ n=2$

For $Q = K_{\ell}$, the generalized Cartan matrix is given by $a₁$

$$
K_{\ell}: \bullet_1 \xrightarrow{\cdot} \bullet_2, \quad A_{K_{\ell}} = \begin{pmatrix} 2 & -\ell \\ -\ell & 2 \end{pmatrix}.
$$

- If $\ell = 1$, A_{K_1} is positive definite matrix (finite type),
- If $\ell = 2$, A_{K_2} is semi-positive (affine type),
- If $\ell \geq 3$, $A_{K_{\ell}}$ is indefinite (indefinite type).

Introduction
Frobenius manifold
e-Kronecker quiverع \lq " n -extended" affine A_n

One can obtain a root system $(L, I, \Delta^{\text{re}})$ associated with Q as follows:

Define a free abelian group *L* by

$$
L := \bigoplus_{i=1}^n \mathbb{Z} \cdot \alpha_i,
$$

Quiver and root system ADE type

where, α_i is a formal generator and called the simple root of $i \in Q_0.$

- Define $\mathbb{Z}\text{-}$ bilinear form $I:L\times L\longrightarrow \mathbb{Z}$ by $I(\alpha_i,\alpha_j):=a_{ij}$, called the Cartan form.
- For each *i ∈ Q*0, define a reflection *rⁱ ∈* Aut(*L, I*) by

$$
r_i(\lambda) := \lambda - I(\lambda, \alpha_i)\alpha_i, \quad \lambda \in L.
$$

Define the Weyl group *W* associated with *Q* as the group generated by reflections $W := \langle r_1, \ldots, r_n \rangle \subset \text{Aut}(L, I).$

 \bullet Define the set of real roots Δ^{re} by

$$
\Delta^{\text{re}} := \{ w(\alpha_i) \in L \mid w \in W, \ i \in Q_0 \}.
$$

 \lq " n -extended" affine A_n

Introduction
Frobenius manifold
e-Kronecker quiverع Quiver and root system ADE type

Define a C-vector space h by

$$
\mathfrak{h}:=\mathrm{Hom}_{\mathbb{Z}}(L,\mathbb{C})\cong \mathbb{C}^n.
$$

and denote the natural coupling by $\langle -, - \rangle : \mathfrak{h}^* \times \mathfrak{h} \longrightarrow \mathbb{C}$, where h *∗* := *L ⊗*^Z C. The Weyl group *W* acts on h as follows:

$$
\langle \alpha, w(x) \rangle := \langle w^{-1}(\alpha), x \rangle, \quad \alpha \in \mathfrak{h}^*, \ x \in \mathfrak{h}, \ w \in W.
$$

The element $c := r_1 r_2 \cdots r_n \in W$ is called the Coxeter element. The tuple $(L, I, \Delta^{\text{re}}, c)$ is called a generalized root system.

Introduction
Frobenius manifold
e-Kronecker quiverع \lq " n -extended" affine A_n Quiver and root system
ADE type

Let $Q = \vec{\Delta}$ be a Dynkin quiver.

In this case, the Weyl group *W* is finite, and the Coxeter element *c* has finite order. The order $h \in \mathbb{Z}_{\geq 2}$ of c which is called the Coxeter number determines the (conformal) dimension of a Frobenius manifold.

Theorem 8 (Saito, Saito–Yano–Sekiguchi, Dubrovin).

There exists a unique Frobenius structure (*η, ◦, e, E*) *of dimension* $d = 1 - \frac{2}{l}$ $\frac{2}{h}$ on $\mathfrak{h}/W \cong \mathbb{C}^n$ *satisfying*

- **1** The intersection form g is determined by the Cartan matrix $A_{\vec{\Lambda}}$.
- \bullet *There exist W-invariant homogeneous polynomials* t_1, \cdots, t_n *such that* (*t*1*, . . . , tn*) *is a (global) flat coordinate system of the Frobenius manifold.*
- ³ *The Euler vector field E is given by*

$$
E = \sum_{i=1}^{n} \frac{\deg t_i}{h} t_i \frac{\partial}{\partial t_i}.
$$

Introduction
Frobenius manifold
e-Kronecker quiverع \lq " n -extended" affine A_n

Quiver and root system
ADE type

This Frobenius structure is based on the Chevalley's Theorem;

Theorem 9 (Chevalley's Theorem).

Let

- $\alpha_i^*(-\omega_i^\vee) \in \mathfrak{h}$: the dual (fundamental co-weight) of $\alpha_i \in \mathfrak{h}^*$,
- (x_1, \dots, x_n) : the linear coordinate with respect to $\{\alpha_1^*, \dots, \alpha_n^*\}$. *We have*
- ¹ C[h]*^W ⊂* C[h] *∼*= C[*x*1*, · · · , xn*] *is generated by n homogeneous polynomials* p_1, \cdots, p_n *such that*

 $h = \deg p_1 > \deg p_2 \geq \cdots \geq \deg p_{n-1} > \deg p_n = 2.$

- \bigodot { $\deg p_1, \ldots, \deg p_n$ } *does not depend on the choice of* p_1, \cdots, p_n *.*
- ³ *The eigenvalues of the Coxeter element c are*

$$
\exp\left(2\pi\sqrt{-1}\,\frac{\deg p_1-1}{h}\right),\cdots,\exp\left(2\pi\sqrt{-1}\,\frac{\deg p_n-1}{h}\right)
$$

Introduction
Frobenius manifold
e-Kronecker quiverع \lq " n -extended" affine A_n Quiver and root system ADE type *ℓ*-Kronecker quiver

We obtain the Frobenius structrue (η, \circ, e, E) in Theorem 8 as follows;

- (unit vector field *e*) $e := \frac{\partial}{\partial x}$ *∂p*¹
- (Euler vector field *E*)

$$
E := \sum_{i=1}^{n} \frac{1}{h} x_i \frac{\partial}{\partial x_i} = \sum_{i=1}^{n} \frac{\deg p_i}{h} p_i \frac{\partial}{\partial p_i}
$$

 $(\text{metric }\eta)$ Let $g:\Omega^1_\mathfrak{h}\times \Omega^1_\mathfrak{h}\longrightarrow \mathcal{O}_\mathfrak{h}$ be a non-degenerated $\mathcal{O}_\mathfrak{h}$ -bilinear form induced by $I:L\times L\longrightarrow \mathbb{Z}$ under the natural identification of T_x^* $\mathfrak{h} \cong \mathfrak{h}^*$, that is,

$$
g(dx_i, dx_j) := I(\alpha_i, \alpha_j).
$$

It induces a symmetric $\mathcal{O}_{\mathfrak{h}/W}$ -bilinear form $g:\Omega^1_{\mathfrak{h}/W}\times \Omega^1_{\mathfrak{h}/W}\longrightarrow \mathcal{O}_{\mathfrak{h}/W}$. Then, we define

$$
\eta := \mathrm{Lie}_e g.
$$

Introduction
Frobenius manifold
e-Kronecker quiverع \lq " n -extended" affine A_n

Quiver and root system
ADE type

In order to define the product structure, we need the following

Theorem 10 (Saito–Yano–Sekiguchi).

*Let ∇***/** *be the Levi–Civita connection with respect to η. There exists ∇***/***-flat W-invariant homogeneous polynomials t*1*, · · · , tⁿ satisfying the conditions of Chevalley's Theorem.*

(product structure *◦*) Let *∇* be the Levi-Civita connection with respect to $g:\Omega^1_{{\frak h}/W}\times\Omega^1_{{\frak h}/W}\longrightarrow \mathcal{O}_{{\frak h}/W}.$ The product structure \circ is defined by

$$
C_{ij}^k := \frac{h}{\deg t_k - 1} \sum_{a=1}^n \eta \left(\frac{\partial}{\partial t_i}, \frac{\partial}{\partial t_a} \right) \cdot g \left(dt_a, \nabla_{\frac{\partial}{\partial t_j}} dt_k \right)
$$

for $i, j, k \in Q_0$, and

$$
\frac{\partial}{\partial t_i} \circ \frac{\partial}{\partial t_j} := \sum_{k=1}^n C_{ij}^k \frac{\partial}{\partial t_k}.
$$

Define the regular subset $\mathfrak{h}^{\text{reg}}$ of $\mathfrak h$ by

$$
\mathfrak{h}^{\text{reg}}:=\mathfrak{h}\setminus\bigcup_{\alpha\in\Delta^{\text{re}}}H_{\alpha},
$$

Quiver and root system ADE type *ℓ*-Kronecker quiver

where $H_{\alpha} := \{x \in \mathfrak{h} \, | \, \langle \alpha, x \rangle = 0\}$ is the root hyperplane of $\alpha \in \Delta^{\text{re}}$.

Introduction
Frobenius manifold
e-Kronecker quiverع \lq " n -extended" affine A_n

For the Frobenius manifold $(\mathfrak{h}/W, \eta, \circ, e, E)$, we can consider the regular locus of \mathfrak{h}/W . This is naturally isomorphic to the W -orbit space of $\mathfrak{h}^{\rm reg}$.

$$
(\mathfrak{h}/W)^{\text{reg}} \cong \mathfrak{h}^{\text{reg}}/W
$$

Introduction
Frobenius manifold
e-Kronecker quiverع \lq " n -extended" affine A_n

Quiver and root system
ADE type

For an *An*-quiver, Ikeda showed that the universal covering space (\mathfrak{h}/W) ^{reg} of (\mathfrak{h}/W) ^{reg} with the period mapping can be identified with the space of stability conditions of "the derived category of *N*-Calabi–Yau completion of A_n -quiver $\check{\mathcal{D}}_N(A_n)$ " with the central charge map:

where *◦* denotes a connected component.

Introduction
Frobenius manifold
e-Kronecker quiverع \lq " n -extended" affine A_n Quiver and root system ADE type *ℓ*-Kronecker quiver

Let $Q = K_{\ell}$ the ℓ –Kronecker quiver with $\ell \geq 3$.

The Coxeter element *c* does not have finite order. What is *h* in this case?

Let *ρ* be the spectral radius of the Coxeter element *c*:

$$
\rho = \frac{\ell^2 - 2 + \sqrt{\ell^4 - 4\ell^2}}{2} \; (>1).
$$

The eigenvalues of c are ρ and ρ^{-1} . It can be regarded as follows:

$$
\rho = \exp\left(2\pi\sqrt{-1}\frac{\log\rho}{2\pi\sqrt{-1}}\right), \quad \rho^{-1} = \exp\left(-2\pi\sqrt{-1}\frac{\log\rho}{2\pi\sqrt{-1}}\right).
$$

Define a number $h \in \mathbb{C} \backslash \mathbb{R}$ by $h := \frac{2\pi\sqrt{-1}}{h}$ $\frac{n \cdot v - 1}{\log \rho}$ and hence we have

$$
\rho = \exp\left(2\pi\sqrt{-1}\frac{2-1}{h}\right), \quad \rho^{-1} = \exp\left(2\pi\sqrt{-1}\frac{h-1}{h}\right)
$$

.

Introduction Frobenius manifold *ℓ*-Kronecker quiver "*n*-extended" affine *An* Quiver and root system ADE type *ℓ*-Kronecker quiver

Define the set of imaginary roots $\Delta _+ ^{\mathrm{im}}$ by

 $\Delta_{+}^{\text{im}} := \{w(\alpha) \in L \mid w \in W, \ \alpha \in L_{+} \text{ s.t. } I(\alpha, \alpha_{i}) \leq 0, \ i = 1, 2\}.$

and the imaginary cone $\mathcal{I} \subset \mathfrak{h}^*_{\mathbb{R}}$ by the closure of the convex hull of $\Delta_+^{\text{im}} \cup \{0\}.$

Definition 11 (Ikeda).

Define an open subset $X \subset \mathfrak{h}$ *by*

$$
X:=\mathfrak{h}\setminus\bigcup_{\lambda\in\mathcal{I}\setminus\{0\}}H_{\lambda}
$$

*and a regular subset X*reg *⊂ X by*

$$
X^{\rm reg}:=X\setminus\bigcup_{\alpha\in\Delta^{\rm re}}H_\alpha,
$$

where $H_{\lambda} := \{ Z \in \mathfrak{h} \mid Z(\lambda) = 0 \}$ for $\lambda \in \mathfrak{h}^*$.

It is known that the fundamental group is $\pi_1(X) \cong \mathbb{Z}$.

Introduction
Frobenius manifold
e-Kronecker quiverع \lq " n -extended" affine A_n

Quiver and root system ADE type *ℓ*-Kronecker quiver

Example of the case $\ell = 3$: red dots = real roots Δ^{re} , black dots = $\mathsf{positive}$ imaginary roots Δ^{im}_+ , gray shaded domain $=$ imaginary cone $\mathcal{I}.$

Introduction
Frobenius manifold
e-Kronecker quiverع \lq " n -extended" affine A_n

and root sys ADE type *ℓ*-Kronecker quiver

The following theorem is one of the reasons why the space *X* is suitable:

Theorem 12 (Ikeda).

Let Q be an acyclic connected finite quiver and $\check{\mathcal{D}}_2(Q)$ "the derived *category of* 2*-Calabi–Yau completion of Q". The natural map induced by the central charge map Z is a covering map*

 $\mathrm{Stab}^{\circ}(\check{\mathcal{D}}_2(Q)) \longrightarrow X^{\mathrm{reg}}/W,$

 $\mathsf{where} \ \mathrm{Stab}^\circ(\check{\mathcal{D}}_2(Q))$ *is a connected component of* $\mathrm{Stab}(\check{\mathcal{D}}_2(Q)).$

Introduction
Frobenius manifold
e-Kronecker quiverع

 \lq " n -extended" affine A_n ADE type *ℓ*-Kronecker quiver

There exists a *W*-action on the universal covering space \widetilde{X} such that the map $\widetilde{X} \longrightarrow X$ is *W*-equivariant.

Definition 13.

Define a complex analytic space $\widetilde{X}/\!\!/W$ *as follows:*

- \bullet *The underlying space is the quotient space* \widetilde{X}/W and denote by $\pi : \widetilde{X} \rightarrow \widetilde{X}/W$ the quotient map.
- *The structure sheaf is* $O_{\tilde{X}/\!\!/W} := \pi_* O^W_{\tilde{X}}$, where $O^W_{\tilde{X}}$ is the *W* -invariant subsheaf of $\mathcal{O}_{\widetilde X}$.

 Dim itrov–Katzarkov showed that $\mathrm{Stab}(\mathcal{D}^b(K_\ell))\cong \mathbb{C}\times \mathbb{H}$ as complex manifolds, where $\mathbb{H} = \{z \in \mathbb{C} \mid |\text{Im}(z)| > 0\}.$

Proposition 14.

 $\widetilde{X}/\!\!/W$ is a complex manifold. Moreover, there exists an isomorphism

$$
\widetilde{X}/\!\!/W \cong \mathrm{Stab}(\mathcal{D}^b(K_\ell))
$$

as complex manifolds.

Introduction
Frobenius manifold
e-Kronecker quiverع \lq " n -extended" affine A_n

ADE type *ℓ*-Kronecker quiver

Theorem 15 (Ikeda-O-Shiraishi-Takahashi).

There exists a unique Frobenius structure $(η, ∘, e, E)$ *of dimension* 1 − 2 *h*

on $\widetilde{X}/\!\!/W$ satisfying

- ¹ *The intersection form g is determined by the generalized Cartan matrix* A_{K_ℓ} .
- ² *The functions* (*t*1*, t*2) *defined by*

$$
t_1 = e^{hy_1} - e^{hy_2} = "x_1^h - x_2^h", \quad t_2 = e^{y_1 + y_2} = x_1 x_2
$$

are W-invariant homogeneous and forms a flat coordinate system of the Frobenius structure, where (*y*1*, y*2) *is the "natural" coordinate system on* \widetilde{X} *.*

³ *The Euler vector field E is given by*

$$
E=t_1\frac{\partial}{\partial t_1}+\frac{2}{h}t_2\frac{\partial}{\partial t_2}.
$$

manifold *ℓ*-Kronecker quiver $\lq n$ -extended" affine $A_{\textit{n}}$

Introduction

Frobenius manifold via (Def.) Perspectives

1 Introduction

- 3 construction of Frobenius manifold
- Bridgeland stability condition

² Frobenius manifold

- Definition of Frobenius manifolds
- Intersection form

³ *ℓ*-Kronecker quiver

- Quiver and root system
- ADE type
- *ℓ*-Kronecker quiver

⁴ "*n*-extended" affine *Aⁿ*

- Frobenius manifold via (Def.)
- **•** Perspectives

Introduction

Frobenius manifold via (Def.) Perspectives

Let $M := (\mathbb{C}^*)^n \times \text{Conf}^n(\mathbb{C})$, where

Confⁿ(
$$
\mathbb{C}
$$
) = { $(p_1,...,p_n) \in \mathbb{C}^n | p_i \neq p_j (i \neq j)$ }.

Consider a function $F: \mathbb{C} \times M \longrightarrow \mathbb{C}$ defined by

$$
F(z; \mathbf{q}, \mathbf{p}) := z + \sum_{i=1}^n \frac{q_i}{z - p_i}, \quad \mathbf{q} \in (\mathbb{C}^*)^n, \ \mathbf{p} \in \mathrm{Conf}^n(\mathbb{C}),
$$
 and $\zeta := \frac{dz}{z}.$

It was shown by Dubrovin in the viewpoint of the Hurwitz space that the pair (*F, ζ*) induces a Frobenius structure (*η^ζ , ◦, e, E*) on *M*.

Introduction Frobenius manifold *ℓ*-Kronecker quiver $\lq n$ -extended" affine $A_{\textit{n}}$

Frobenius manifold via (Def.) Perspectives

Theorem 16 (Ikeda–O–Shiraishi–Takahashi).

Define a local coordinate system $\mathbf{t} = (t_1, \ldots, t_n, t_{1^*}, \ldots, t_{n^*})$ by

$$
F(z;{\bf t})=z+\frac{e^{t_{1*}}}{z}+t_1+\sum_{i=2}^n\frac{z}{z-e^{t_{i*}}}t_i.
$$

Then it forms a flat coordinate system of the Frobenius manifold $(M, \eta_{\zeta}, \circ, e, E)$ *. Moreover, we have*

$$
E = t_1 \partial_1 + \sum_{i=2}^n t_i \partial_i + 2\partial_1 + \sum_{i=2}^n \partial_i,
$$

and

$$
\eta_{\zeta}(\partial_a, \partial_b) = \begin{cases} 1, & (b = a^*), \\ 0, & (\text{otherwise}). \end{cases}
$$

Introduction Frobenius manifold *ℓ*-Kronecker quiver $\lq n$ -extended" affine $A_{\textit{n}}$

Frobenius manifold via (Def.) Perspectives

Theorem 17 (Ikeda–O–Shiraishi–Takahashi).

The Frobenius potential F is given by

$$
\mathcal{F}(\mathbf{t}) = \sum_{i=1}^{n} \frac{1}{2} t_i^2 t_{i^*} + \sum_{i=2}^{n} t_1 t_i t_{i^*} + e^{t_{1^*}} - \sum_{i=2}^{n} t_i e^{t_{1^*} - t_{i^*}}
$$

+
$$
\sum_{\substack{2 \le i, j \le n \\ i \neq j}} t_i t_j \log(e^{t_{i^*}} - e^{t_{j^*}}) + \sum_{i=2}^{n} \frac{1}{2} t_i^2 \log t_i + \sum_{i=2}^{n} t_i e^{t_{i^*}}.
$$

By this theorem, we can calculate the intersection form *g*:

$$
g(dt_i, dt_j) = \sum_{a,b=1}^n \eta^{ia} \eta^{jb} E \partial_a \partial_b \mathcal{F}.
$$

Introduction Frobenius manifold *ℓ*-Kronecker quiver "*n*-extended" affine *An*

Frobenius manifold via (Def.) **Perspectives**

Let *∇* be the second structure connection of the Frobenius manifold $(M,\eta_\zeta,\circ ,e,E).$ That is, ∇ is the Levi–Civita connection with respect to the intersection form *g*.

Theorem 18 (Ikeda–O–Shiraishi–Takahashi).

There exists a ∇ -flat coordinate system $(x_1, \ldots, x_n, x_1^*, \ldots, x_{n^*})$ such *that the matrix representation of the intersection form g with respect to the basis is given by*

$$
(g(dx_a, dx_b)) = \begin{pmatrix} -I_{A_n}^{-1} & 0 \ 0 & I_{A_n} \end{pmatrix},
$$

where I_{A_n} *is the Cartan matrix of* A_n *type*

$$
I_{A_n} = \begin{pmatrix} 2 & -1 & 0 & \cdots & 0 \\ -1 & 2 & -1 & \cdots & 0 \\ 0 & -1 & 2 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 2 \end{pmatrix}.
$$

Introduction Frobenius manifold *ℓ*-Kronecker quiver "*n*-extended" affine *An*

Frobenius manifold via (Def.) Perspectives

(Sketch of proof)

Define *pi*(**x**) by

$$
p_i(\mathbf{x}) := \begin{cases} \mathbf{e} \Big[\sum_{j=1}^n \frac{j}{n+1} x_{j^*} \Big] \mathbf{e} \left[x_1 \right], & i = 1, \\ \mathbf{e} \Big[\sum_{j=1}^n \frac{j}{n+1} x_{j^*} \Big] \mathbf{e} \left[x_i - x_{i-1} \right], & i = 2, 3, \dots, n, \\ \mathbf{e} \Big[\sum_{j=1}^n \frac{j}{n+1} x_{j^*} \Big] \mathbf{e} \left[-x_n \right], & i = n+1. \end{cases}
$$

Consider

$$
F(z; \mathbf{x}) = \frac{\prod_{i=1}^{n+1} (z - p_i(\mathbf{x}))}{z \prod_{k=2}^{n} (z - e \left[\sum_{j=k}^{n} x_{j^*} \right])}.
$$

Introduction Frobenius manifold *ℓ*-Kronecker quiver $\lq n$ -extended" affine $A_{\textit{n}}$ Frobenius manifold via (Def.) Perspectives

By comparing the coefficients $F(z; \mathbf{x})$ and $F(z; \mathbf{t})$ (or taking residue), we have

$$
\begin{cases}\n t_1 = -e^{-\sum_{k=2}^n t_k *} \sum_{k=1}^{n+1} \prod_{\substack{1 \leq l \leq n+1 \\ l \neq k}} p_l(\mathbf{x}) + \sum_{i=2}^n e^{t_1 * - t_i *}, \\
 \prod_{i=1}^{n+1} (e^{t_i *} - p_l(\mathbf{x})) \\
 t_i = \frac{1}{e^{2t_i *}} \prod_{\substack{2 \leq k \leq n \\ k \neq i}} (e^{t_i *} - e^{t_k *})}, \quad (i = 2, ..., n), \\
 t_{i^*} = \sum_{k=i}^n x_{k^*}, \quad (i^* = 1^*, ..., n^*).\n\end{cases}
$$

Hence, we obtain the statement by direct calculations.

 \Box

Introduction Frobenius manifold

 $\lq n$ -extended" affine $A_{\textit{n}}$ Let $R^{(n)}_{A_n}$ $\mathcal{A}_n^{(n)} = (L, I, \Delta^{\text{re}})$ be a root system with the signature $(n, n, 0)$ such that $R^{(n)}_{A_n}$ $\binom{n}{A_n}$ / $\text{rad } I$ is isomorphic to the root system of A_n type:

Frobenius manifold via (Def.) Perspectives

- $L := \bigoplus_{n=1}^{n}$ *i*=1 $\mathbb{Z}\alpha_i \oplus \bigoplus^n$ *i*=1 $\mathbb{Z}\alpha_{i^*}$ is a free \mathbb{Z} -module of rank $2n$,
- *I* is the Cartan form such that the Coxeter–Dynkin defined by *I* is

where

$$
I(\alpha_i, \alpha_j) = 2 \iff \alpha_i = \alpha_j
$$

\n
$$
I(\alpha_i, \alpha_j) = -1 \iff \alpha_i \longrightarrow \alpha_j
$$

\n
$$
I(\alpha_i, \alpha_j) = 0 \iff \alpha_i \longrightarrow \alpha_j
$$

In particular, rad *I* has rank *n*.

•
$$
\Delta^{\text{re}} = \{ \alpha \in L \, | \, I(\alpha, \alpha) = 2 \}.
$$

Introduction

Frobenius manifold via (Def.) Perspectives

We expect that there exists a Frobenius manifold obtained from the above root system $R^{(n)}_{A_n}$ $A_n^{(n)}$ and it is isomorphic to $(M,\eta_{\zeta},\circ ,e,E)$:

$$
\begin{array}{ccc}\n\text{(Def.)} & \longleftrightarrow & (\text{Weyl}) \\
(F: \mathbb{C} \times M \longrightarrow \mathbb{C}, \zeta) & (R_{A_n}^{(n)} = (L, I, \Delta^{\text{re}}), c)\n\end{array}
$$

Dubrovin–Zhang proved it for $n = 1$. In this case, to get a Frobenius manifold, we consider the extended affine Weyl group \widetilde{W} and an extension $\mathfrak{h} := \mathfrak{h} \times \mathbb{C}$ of the Cartan subalgebra \mathfrak{h} .

Based on the case of $n = 1$, we are trying to construct the "*n*-extended" affine Weyl group \widehat{W} and the "*n*-extension" \widehat{b} of h such that $\widehat{b}/\widehat{W} \cong M$ and it has a Frobenius structure.

Thank you for your attention !